Felpfe Inc.
Search
Close this search box.
call 24/7

+484 237-1364‬

Search
Close this search box.

Exactly-once processing guarantees with Kafka Streams

Introduction to Exactly-Once Processing Guarantees

In this section, we will explore exactly-once processing guarantees in Kafka Streams. Exactly-once semantics ensure that each record is processed once and only once, even in the presence of failures or retries. Kafka Streams provides mechanisms and techniques to achieve exactly-once processing, ensuring data integrity and consistency.

Topics covered in this section:

  1. Introduction to exactly-once processing guarantees and their importance.
  2. Understanding the challenges and trade-offs in achieving exactly-once semantics.
  3. Techniques for achieving exactly-once processing in Kafka Streams.
  4. Configuring transactional processing and idempotent operations.
  5. Handling failure scenarios and ensuring end-to-end exactly-once semantics.

Code Sample: Achieving Exactly-Once Processing with Kafka Streams

Java
import org.apache.kafka.streams.*;
import org.apache.kafka.streams.kstream.*;
import org.apache.kafka.common.serialization.*;
import java.util.Properties;

public class KafkaStreamsExactlyOnceExample {

    public static void main(String[] args) {
        // Configure Kafka Streams application
        Properties props = new Properties();
        props.put(StreamsConfig.APPLICATION_ID_CONFIG, "my-streams-app");
        props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
        props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        props.put(StreamsConfig.PROCESSING_GUARANTEE_CONFIG, StreamsConfig.EXACTLY_ONCE);

        // Create Kafka Streams builder
        StreamsBuilder builder = new StreamsBuilder();

        // Define the processing logic
        KStream<String, String> inputStream = builder.stream("input_topic");
        KStream<String, String> processedStream = inputStream
                .mapValues(value -> process(value))
                .filter((key, value) -> filter(value));

        processedStream.to("output_topic");

        // Build and start the Kafka Streams application
        KafkaStreams streams = new KafkaStreams(builder.build(), props);
        streams.start();

        // Gracefully shutdown the application on termination
        Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
    }

    private static String process(String value) {
        // Implement your processing logic here
        // Return the processed value
    }

    private static boolean filter(String value) {
        // Implement your filtering logic here
        // Return true if the value meets the filter condition, false otherwise
    }
}

Reference Link:

  • Kafka Streams documentation on exactly-once processing: link

Helpful Video:

  • “Exactly-Once Semantics in Kafka Streams” by Confluent: link

Ensuring Exactly-Once Processing in Kafka Streams

In this section, we will discuss techniques and best practices for achieving exactly-once processing guarantees in Kafka Streams. By understanding the challenges and adopting the right strategies, you can ensure data integrity and consistency in your stream processing applications.

Topics covered in this section:

  1. Transactional processing and the role of Kafka’s transactional API.
  2. Idempotent operations and their significance in exactly-once processing.
  3. Handling stateful operations and maintaining state consistency.
  4. Configuring and optimizing exactly-once processing for performance.
  5. Testing and validating exactly-once semantics in Kafka Streams applications.

Code Sample: Transactional Processing in Kafka Streams

Java
import

 org.apache.kafka.streams.*;
import org.apache.kafka.streams.kstream.*;
import org.apache.kafka.common.serialization.*;
import java.util.Properties;

public class KafkaStreamsExactlyOnceExample {

    public static void main(String[] args) {
        // Configure Kafka Streams application
        Properties props = new Properties();
        props.put(StreamsConfig.APPLICATION_ID_CONFIG, "my-streams-app");
        props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
        props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        props.put(StreamsConfig.PROCESSING_GUARANTEE_CONFIG, StreamsConfig.EXACTLY_ONCE);

        // Create Kafka Streams builder
        StreamsBuilder builder = new StreamsBuilder();

        // Define the processing logic
        KStream<String, String> inputStream = builder.stream("input_topic");

        // Perform transactional processing
        KStream<String, String> processedStream = inputStream.transform(
                () -> new Processor<String, String>() {
                    private ProcessorContext context;

                    @Override
                    public void init(ProcessorContext context) {
                        this.context = context;
                        this.context.beginTransaction();
                    }

                    @Override
                    public void process(String key, String value) {
                        // Perform processing logic
                        // ...
                        // Forward processed record
                        context.forward(key, processedValue, To.all().withTimestamp(context.timestamp()));
                    }

                    @Override
                    public void close() {
                        context.commitTransaction();
                    }
                }
        );

        processedStream.to("output_topic");

        // Build and start the Kafka Streams application
        KafkaStreams streams = new KafkaStreams(builder.build(), props);
        streams.start();

        // Gracefully shutdown the application on termination
        Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
    }
}

Reference Link:

  • Kafka Streams documentation on exactly-once processing: link

Helpful Video:

  • “Kafka Streams Exactly-Once Processing” by DataCumulus: link

Conclusion:
In this module, we explored exactly-once processing guarantees in Kafka Streams. Exactly-once semantics ensure that each record is processed once and only once, even in the face of failures or retries. By implementing transactional processing and employing idempotent operations, you can achieve exactly-once processing and maintain data integrity.

The provided code samples and reference links equip you to implement exactly-once processing in your Kafka Streams applications. Configuring the appropriate processing guarantees and following best practices for handling stateful operations enable you to achieve end-to-end exactly-once semantics. Testing and validating exactly-once processing ensure the reliability and consistency of your stream processing pipelines.

Exactly-once processing guarantees in Kafka Streams ensure data integrity and consistency, allowing for reliable and accurate stream processing. By leveraging the capabilities and techniques provided, you can build robust and fault-tolerant stream processing applications with exactly-once semantics.

Unleashing The Tech Marvels

Discover a tech enthusiast’s dreamland as our blog takes you on a thrilling journey through the dynamic world of programming. 

More Post like this

About Author
Ozzie Feliciano CTO @ Felpfe Inc.

Ozzie Feliciano is a highly experienced technologist with a remarkable twenty-three years of expertise in the technology industry.

kafka-logo-tall-apache-kafka-fel
Stream Dream: Diving into Kafka Streams
In “Stream Dream: Diving into Kafka Streams,”...
ksql
Talking in Streams: KSQL for the SQL Lovers
“Talking in Streams: KSQL for the SQL Lovers”...
spring_cloud
Stream Symphony: Real-time Wizardry with Spring Cloud Stream Orchestration
Description: The blog post, “Stream Symphony:...
1_GVb-mYlEyq_L35dg7TEN2w
Kafka Chronicles: Saga of Resilient Microservices Communication with Spring Cloud Stream
“Kafka Chronicles: Saga of Resilient Microservices...
kafka-logo-tall-apache-kafka-fel
Tackling Security in Kafka: A Comprehensive Guide on Authentication and Authorization
As the usage of Apache Kafka continues to grow in organizations...
1 2 3 58
90's, 2000's and Today's Hits
Decades of Hits, One Station

Listen to the greatest hits of the 90s, 2000s and Today. Now on TuneIn. Listen while you code.